
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 1

Summarization and generation of air time on the evolutionary

Tweet

MS.S.HARSHANANDINI MR.P.VIJAYA RAGHAVULU

Abstract— Short-text messages such as

tweets are being created and shared at an

unprecedented rate. Tweets, in their raw

form, while being informative, can also be

overwhelming. For both end-users and data

analysts, it is a nightmare to plow through

millions of tweets which contain enormous

amount of noise and redundancy. In this

paper, we propose a novel continuous

summarization framework called Sumblr to

alleviate the problem. In contrast to the

traditional document summarization

methods which focus on static and small-

scale data set, Sumblr is designed to deal

with dynamic, fast arriving, and large-scale

tweet streams. Our proposed framework

consists of three major components. First,

we propose an online tweet stream

clustering algorithm to cluster tweets and

maintain distilled statistics in a data

structure called tweet cluster vector (TCV).

Second, we develop a TCV-Rank

summarization technique for generating

online summaries and historical summaries

of arbitrary time durations. Third, we design

an effective topic evolution detection

method, which monitors summary-

based/volume-based variations to produce

timelines automatically from tweet streams.

Our experiments on large-scale real tweets

demonstrate the efficiency and effectiveness

of our framework.

1INTRODUCTION

Increasing popularity of microblogging

services such as Twitter, Weibo, and Tumblr

has resulted in the explosion of the amount

of short-text messages. Twitter, for instance,

which receives over 400 million tweets per

day1 has emerged as an invaluable source of

news, blogs, opinions, and more. Tweets, in

their raw form, while being informative, can

also be overwhelming. For instance, search

for a hot topic in Twitter may yield millions

of tweets, spanning weeks. Even if filtering

is allowed, plowing through so many tweets

 2

for important contents would be a

nightmare, not to mention the enormous

amount of noise and redundancy that one

might encounter. To make things worse,

new tweets satisfying the filtering criteria

may arrive continuously, at an unpredictable

rate. One possible solution to information

overload problem is summarization.

Summarization represents a set of

documents by a summary consisting of

several sentences. Intuitively, a good

summary should cover the main topics (or

subtopics) and have diversity among the

sentences to reduce redundancy.

Summarization is extensively used in

content presentation, specially when users

surf the internet with their mobile devices

which have much smaller screens than PCs.

Traditional document summarization

approaches, however, are not as effective in

the context of tweets given both thelarge

volume of tweets as well as the fast and

continuous nature of their arrival. Tweet

summarization, therefore, requires

functionalities which significantly differ

from traditional summarization. In general,

tweet summarization has to take into

consideration thet emporal feature of the

arriving tweets. Let us illustrate the desired

properties of a tweet summarization system

using an illustrative example of a usage of

such a system. Consider a user interested in

a topic-related tweet stream, for example,

tweets about “Apple”. A tweet

summarization system will continuously

monitor “Apple” related tweets producing a

real-time timeline of the tweet stream. As

illustrated in Fig. 1, a user may explore

tweets based on a timeline (e.g., “Apple”

tweets posted between October 22nd, 2012

to November 11th, 2012). Given a timeline

range, the summarization system may

produce a sequence of timestamped

summaries to highlight points where the

topic/subtopics evolved in the stream. Such

a system will effectively enable the user to

learn major news/ discussion related to

“Apple” without having to read through the

entire tweet stream. Given the big picture

about topic evolution about “Apple”, a user

may decide to zoom in to get a more

detailed report for a smaller duration (e.g.,

from 8 am to 11 pm on November 5th). The

system may provide a drill-down summary

of the duration that enables the user to get

additional details for that duration. A user,

perusing a drill-down summary, may

alternatively zoom out to a coarser range

(e.g., October 21st to October 30th) to

obtain a roll-up summary of tweets. To be

 3

able to support such drill-down and roll-up

operations, the summarization system must

support the following two queries:

summaries of arbitrary time durations and

real-time/range timelines. Such application

would not only facilitate easy navigation in

topic-relevant tweets, but also support a

range of data analysis tasks such as instant

reports or historical survey. To this end, in

this paper, we propose a new summarization

method, continuous summarization, for

tweet streams.

2 RELATED WORK

 In this section, we review the related work

including stream data clustering,

document/microblog summarization,

timeline detection, and other microblog

mining tasks.

2.1 Stream Data Clustering Stream data

 clustering has been widely studied in the

literature. BIRCH clusters the data based on

an in-memory structure called CF-tree

instead of the original large data set. Bradley

et alproposed a scalable clustering

framework which selectively stores

important portions of the data, and

compresses or discards other portions.

CluStream is one of the most classic stream

clustering methods. It consists of an online

micro-clustering component and an offline

macro-clustering component. The pyramidal

time frame was also proposed in to recall

historical microclusters for different time

durations. A variety of services on the Web

such as news filtering, text crawling, and

topic detecting etc. have posed requirements

for text stream clustering. A few algorithms

have been proposed to tackle the problem

Most of these techniques adopt partition-

based approaches to enable online clustering

of stream data. As a consequence, these

techniques fail to provide effective analysis

on clusters formed over different time

durations.

2.2 Document/Microblog

Summarization Document summarization

can be categorized as extractive and

abstractive. The former selects sentences

from the documents, while the latter may

generate phrases and sentences that do not

appear in the original documents. In this

paper, we focus on extractive

summarization. Extractive document

summarization has received a lot of recent

attention. Most of them assign salient scores

to sentences of the documents, and select the

top-ranked sentences. Some works try to

 4

extract summaries without such salient

scores. Wang et al. used the symmetric non-

negative matrix factorization to cluster

sentences and choose sentences in each

cluster for summarization. He et al.

proposed to summarize documents from the

perspective of data reconstruction, and select

sentences that can best reconstruct the

original documents. Xu et al. modeled

documents (hotel reviews) as multi-attribute

uncertain data and optimized a probabilistic

coverage problem of the summary. While

document summarization has been studied

for years, microblog summarization is still

in its infancy. Sharifi et al. proposed the

Phrase Reinforcement algorithm to

summarize tweet posts using a single

2.3 Timeline Detection

The demand for analyzing massive contents

in social medias fuels the developments in

visualization techniques. Timeline is one of

these techniques which can make analysis

tasks easier and faster. Diakopoulos and

Shamma made early efforts in this area,

using timelines to explore the 2008

Presidential Debates by Twitter sentiment.

Dork et al. presented a timeline-based

backchannel for conversations around

events. In Yan et al. proposed the

evolutionary timeline summarization (ETS)

to compute evolution timelines similar to

ours, which consists of a series of time-

stamped summaries. However, in the dates

of summaries are determined by a pre-

defined timestamp set. In contrast, our

method discovers the changing dates and

generates timelines dynamically during the

process of continuous summarization.

Moreover, ETS does not focus on efficiency

and scalability issues, which are very

important in our streaming context. Several

systems detect important moments when

rapid increases or “spikes” in status update

volume happen. TwitInfo developed an

algorithm based on TCP congestion

detection, while Nichols et al. employed a

slope-based method to find spikes. After

that, tweets from each moment are

identified, and word clouds or summaries

are selected. Different from this two-step

approach, our method detects topic

evolution and produces summaries/timelines

in an online fashion.

2.4 Other Microblog Mining Tasks

The emergence of microblogs has

engendered researches on many other

mining tasks, including topic modeling [27],

 5

storyline generation [28] and event

exploration [25]. Most of these researches

focus on static data sets instead of data

streams. For twitter stream analysis, Yang et

al. [29] studied frequent pattern mining and

compression. In [30], Van Durme aimed at

discourse participants classification and used

gender prediction as the example task,

which is also a different problem from ours.

To sum up, in this work, we propose a new

problem called continuous tweet

summarization. Different from previous

studies, we aim to summarize large-scale

and evolutionary tweet streams, producing

summaries and timelines in an online

fashion.

3 PRELIMINARIES

In this section, we first present a data model

for tweets, then introduce two important

data structures: the tweet cluster vector and

the pyramidal time frame.

3.1 Tweet Representation

 Generally, a document is represented as a

textual vector, where the value of each

dimension is the TF-IDF score of a word.

However, tweets are not only textual, but

also have temporal nature—a tweet is

strongly correlated with its posted time. In

addition, the importance of a tweet is

affected by the author’s social influence. To

estimate the user influence, we build a

matrix based on social relationships among

users, and compute the UserRank as in [31].

As a result, we define a tweet ti as a tuple:

ðtvi;ts i;w iÞ, where tvi is the textual vector,

tsi is the posted timestamp and wi is the

UserRank value of the tweet’s author.

3.2 Tweet Cluster Vector

 During tweet stream clustering, it is

necessary to maintain statistics for tweets to

facilitate summary generation. In this

section, we propose a new data structure

called tweet cluster vector, which keeps

information of tweet cluster.

Definition 1. For a cluster C containing

tweets t1;t2;...;tn, its tweet cluster vector is

defined as a tuple: TCVðCÞ¼ ðsum v;wsum

v;ts1;ts2;n;ftsetÞ, where � sum v ¼Pn i¼1

tvi=jjtvijj is the sum of normalized textual

vectors, � wsum v ¼Pn i¼1 wi �tvi is the

sum of weighted textual vectors, � ts1 ¼Pn

i¼1 tsi is the sum of timestamps, � ts2 ¼Pn

i¼1ðtsiÞ2 is the quadratic sum of

timestamps, � n is the number of tweets in

the cluster, and � ft set is a focus tweet set

 6

of size m, consisting of the closest m tweets

to the cluster centroid.

The form of sum v is used for ease of

presentation. In fact, we only store the

identifiers and sums of values of the words

occurring in the cluster. The same

convention is used for wsum v. To select

tweets into ft set, we use cosine similarity as

the distance metric. From the definition, we

can derive the vector of cluster centroid

(denoted as cv) cv ¼ X n i¼1 wi �tvi ! �n

¼ wsum v=n: (1) The definition of TCV is

an extension of the cluster feature vector

proposed in [2]. Besides information of data

points (textual vectors), TCV includes

temporal information and representative

original tweets. As in [2], our TCV structure

can also be updated in an incremental

manner when new tweets arrive. We shall

discuss details on TCV updating in Section

4.1.2.

3.3 Pyramidal Time

 Frame To support summarization over user-

defined time durations, it is crucial to store

the maintained TCVs at particular moments,

which are called snapshots. While storing

snapshots at every moment is impractical

due to huge storage overhead, insufficient

snapshots make it hard to recall historical

information for different durations. This

dilemma leads to the incorporation of the

pyramidal time frame [1]:

4 THE SUMBLR FRAMEWORK

our framework consists of three main

modules: the tweet stream clustering

module, the high-level summarization

module and the timeline generation module.

In this section, we shall present each of them

in detail.

4.1 Tweet Stream Clustering

 The tweet stream clustering module

maintains the online statistical data. Given a

topic-based tweet stream, it is able to

efficiently cluster the tweets and maintain

compact cluster information.

4.1.1 Initialization

At the start of the stream, we collect a small

number of tweets and use a k-means

clustering algorithm to create the initial

clusters. The corresponding TCVs are

initialized according to Definition 1. Next,

the stream clustering process starts to

incrementally update the TCVs whenever a

new tweet arrives.

 7

4.1.2 Incremental Clustering

Suppose a tweet t arrives at time ts, and

there are N active clusters at that time. The

key problem is to decide whether to absorb t

into one of the current clusters or upgrade t

as a new cluster. We first find the cluster

whose centroid is the closest to t.

Specifically, we get the centroid of each

cluster based on Equation (1), compute its

cosine similarity to t, and find the cluster Cp

with the largest similarity (denoted as

MaxSimðtÞ). Note that although Cp is the

closest to t, it does not mean t naturally

belongs to Cp. The reason is that t may still

be very distant from Cp. In such case, a new

cluster should be created . The decision of

whether to create a new cluster can be made

with the following heuristic.

4.2 High-Level Summarization

 The high-level summarization module

provides two types of summaries: online and

historical summaries. An online summary

describes what is currently discussed among

the public. Thus, the input for generating

online summaries is retrieved directly from

the current clusters maintained in memory.

On the other hand, a historical summary

helps people understand the main

happenings during a specific period, which

means we need to eliminate the influence of

tweet contents from the outside of that

period. As a result, retrieval of the required

information for generating historical

summaries is more complicated, and this

shall be our focus in the following

discussion. Suppose the length of a user-

defined time duration is H, and the ending

timestamp of the duration is tse.

.4.2.1 TCV-Rank Summarization

 Algorithm Given an input cluster set, we

denote its corresponding TCV set as DðcÞ.

A tweet set T consists of all the tweets in the

ft sets inDðcÞ. The tweet summarization

problem is to extract k tweets from T, so that

they can cover as many tweet contents as

possible. Let us first describe this problem

formally. Denote F¼f T1;T2;...;T tg as a

collection of non-empty subsets ofT , where

a subset Ti represents a sub-topic and jTij

means the number of its related tweets.

Suppose for each Ti, there is a tweet which

represents the content of Ti’s sub-topic.

Then, selecting k tweets is equivalent to

selecting k subsets. Now, the problem can

be defined as: given a number k and a

collection of sets F, find a subset F0 �F,

such that jF0j¼k and jSTi2F0Tij is

 8

maximized (i.e., F0 contains as many tweets

as possible). We note that this is the Max-

kCover problem, which is NP-hard. Thus,

our summarization problem is also NP-hard.

From the geometric interpretation, our

summarization tends to select tweets that

span the intrinsic subspace of candidate

tweet space, such that it can cover most

information of the whole tweet set.

4.3 Timeline Generation

The core of the timeline generation module

is a topic evolution detection algorithm

which produces real-time and range

timelines in a similar way. We shall only

describe the real-time case here. The

algorithm discovers sub-topic changes by

monitoring quantified variations during the

course of stream processing. A large

variation at a particular moment implies a

sub-topic change, which is a new node on

the timeline. The main process is described

in Algorithm 3. We first bin the tweets by

time (e.g., by day) as the stream proceeds.

This sequenced binning is used as input of

the algorithm. Then, we loop through the

bins and append new timeline nodes

whenever large variations are detected (lines

4-5).

4.3.1 Summary-Based Variation

As tweets arrive from the stream, online

summaries are produced continuously by

utilizing online cluster statistics in TCVs.

This allows for generation of a real-time

timeline.

Generally, when an obvious variation occurs

in the main contents discussed in tweets (in

the form of summary), we can expect a

change of sub-topic (i.e., a time node on the

timeline). To quantify the variation, we use

the Jensen-Shannon divergence to measure

the distance between two word distributions

in two successive summaries Sc and Sp (Sc

is the distribution of the current summary

and Sp is that of the previous one)

DJSðSc;SpÞ¼ 1

2ðDKLðScjjMÞþDKLðSpjjMÞÞ: (3) M is

the average of the two word distributions,

i.e., M ¼ 1 2ðSc þSpÞ. DKL is the

Kullback-Leibler divergence (KLD) which

defines the divergence of distribution M

from S DKLðSjjMÞ¼X w2V pðwjSÞlog

pðwjSÞ pðwjMÞ : (4) We apply

DJSðSc;SpÞ to measure variation instead of

directly using DKLðScjjSpÞ, because the

JSD is a symmetrical and smoothed (the use

of pðwjMÞ avoids zero values of the

denominator in Equation (4)) version of the

 9

KLD. For ease of comparison, we use the

base 2 logarithm in Equation (4), so that the

JSD is bounded by½0;1�[34]. According to

this summary-based variation, we determine

whether the current time is a sub-topic

changing node by Dcur Davg > ts; (5) where

Dcur is the distance between the current

summary and its previous neighboring

summary, Davg is the average distance of all

the previous successive summary pairs

which do not produce time nodes, and ts (ts

� 1) is the decision threshold. That is, we

detect sub-topic changes whenever there is a

burst in distances between successive

summaries.

4.3.2 Volume-Based Variation

 Though the summary-based variation can

reflect sub-topic changes, some of them may

not be influential enough. Since many tweets

are related to users’ daily life or trivial

events, a sub-topic change detected from

textual contents may not be significant

enough.

5 EXPERIMENTS

 In this section, we evaluate the performance

of Sumblr. We present the experiments for

summarization and timeline generation

respectively.

5.1 Experiments for Summarization

 5.1.1 Setup Data Sets.

We construct five data sets to evaluate

summarization. One is obtained by

conducting keyword filtering on a large

Twitter data set used by . The other four

include tweets acquired during one month in

2012 via Twitter’s keyword tracking API.4

As we do not have access to the respective

users’ social networks for these four, we set

their weights of tweets wi to the default

value of 1. Details of the data sets are listed

in Table 2. Ground truth for summaries. As

no previous work has conducted similar

study on continuous summarization, we

have to build our own ground truth

(reference summaries). However, manual

creation of these summaries is apparently

impractical due to the large size of the data

sets. Thus, we employ a two-step method to

obtain fair-quality reference summaries: 1)

Given a time duration, we first retrieve the

corresponding tweet subset, and use the

following three well-recognized

summarization algorithms to get three

candidate summaries. ClusterSum clusters

the tweets and picks the most weighted

tweet from each cluster to form summary.

LexRank first builds a sentence similarity

 10

graph, and then selects important sentences

based on the concept of eigenvector

centrality. DSDR models the relationship

among sentences using linear reconstruction,

and finds an optimal set of sentences to

approximate the original documents, by

minimizing the reconstruction error.

5.1.2 Overall Performance Comparison

In this section, we compare the F-scores and

runtime costs between Sumblr and three

baseline algorithms (sliding window

version). As tweets are often produced very

quickly and reach a huge volume in a short

while, it is hardly meaningful to summarize

a small number of tweets. Thus the window

size should be a relatively large one. In this

experiment, we set window size to 20,000

and sampling interval to 2,000. The step size

varies from 4,000 to 20,000. The metrics are

averaged over the whole stream. Figs. 6 and

7 present the results for different step sizes.

5.1.3 Parameter Tuning

 In this section, we tune the parameters in

our approach. In each of the following

experiments, we vary one parameter and

keep the others fixed. Effect of b. In

Heuristic 1 we use b to determine whether to

create a new cluster. Figs. 9a and 9b show

its effect on summary quality and efficiency.

When b is small, tweets related to different

sub-topics may be absorbed into the same

clusters, so the input of our summarization

component is of low quality. At the same

time, there are many focus tweets in each

cluster, thus the time cost of cluster updating

and summarization is high. When b

increases, too many clusters are created,

causing damage to both quality and

efficiency. A good choice is b ¼ 0:07 as it

gives more balanced results. Effect of

Nmax. Figs. 9c and 9d depict the

performance of Nmax. For small Nmaxs,

many merging operations are conducted,

which are time-consuming and produce lots

of low-quality clusters. For large values,

stream clustering is slow due to large

number of clusters. Note that the storage

overhead (both in memory and disk) is also

higher for larger Nmaxs. A balanced value

for Nmax is 150. Effect of mc. Another

parameter in cluster merging is mc (0 < mc

<1). It does not have significant impact on

efficiency, so we only present its quality

results (Fig. 9e). Small values of mc result in

low-quality clusters, while large ones lead to

many merging operations, which in turn

reduce the quality of clusters. An ideal value

for mc is 0:7.

 11

6 CONCLUSION

We proposed a prototype called Sumblr

which supported continuous tweet stream

summarization. Sumblr employs a tweet

stream clustering algorithm to compress

tweets into TCVs and maintains them in an

online fashion. Then, it uses a TCV-Rank

summarization algorithm for generating

online summaries and historical summaries

with arbitrary time durations. The topic

evolution can be detected automatically,

allowing Sumblr to produce dynamic

timelines for tweet streams. The

experimental results demonstrate the

efficiency and effectiveness of our method.

For future work, we aim to develop a multi-

topic version of Sumblr in a distributed

system, and evaluate it on more complete

and large-scale data sets.

REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P.

S. Yu, “A framework for clustering evolving

data streams,” in Proc. 29th Int. Conf. Very

Large Data Bases, 2003, pp. 81–92.

[2] T. Zhang, R. Ramakrishnan, and M.

Livny, “BIRCH: An efficient data clustering

method for very large databases,” in Proc.

ACM SIGMOD Int. Conf. Manage. Data,

1996, pp. 103–114.

[3] P. S. Bradley, U. M. Fayyad, and C.

Reina, “Scaling clustering algorithms to

large databases,” in Proc. Knowl. Discovery

Data Mining, 1998, pp. 9–15.

 [4] L. Gong, J. Zeng, and S. Zhang, “Text

stream clustering algorithm based on

adaptive feature selection,” Expert Syst.

Appl., vol. 38, no. 3, pp. 1393–1399, 2011.

[5] Q. He, K. Chang, E.-P. Lim, and J.

Zhang, “Bursty feature representation for

clustering text streams,” in Proc. SIAM Int.

Conf. Data Mining, 2007, pp. 491–496. [6]

J. Zhang, Z. Ghahramani, and Y. Yang, “A

probabilistic model for online document

clustering with application to novelty

detection,”

inProc.Adv.NeuralInf.Process.Syst.,2004,pp.

1617–1624.

[7] S. Zhong, “Efficient streaming text

clustering,” Neural Netw., vol. 18, nos. 5/6,

pp. 790–798, 2005.

[8] C. C. Aggarwal and P. S. Yu, “On

clustering massive text and categorical data

streams,” Knowl. Inf. Syst., vol. 24, no. 2,

pp. 171–196, 2010.

 12

 [9] R. Barzilay and M. Elhadad, “Using

lexical chains for text summarization,” in

Proc. ACL Workshop Intell. Scalable Text

Summarization, 1997, pp. 10–17

[10] W.-T. Yih, J. Goodman, L.

Vanderwende, and H. Suzuki,

“Multidocument summarization by

maximizing informative

contentwords,”inProc.20thInt.JointConf.Arti

f.Intell.,2007,pp.1776–1782.

 [11] G. Erkan and D. R. Radev, “LexRank:

Graph-based lexical centrality as salience in

text summarization,” J. Artif. Int. Res., vol.

22, no. 1, pp. 457–479, 2004.

 [12] D. Wang, T. Li, S. Zhu, and C. Ding,

“Multi-document summarization via

sentence-level semantic analysis and

symmetric matrix factorization,” in Proc.

31st Annu. Int. ACM SIGIR Conf. Res.

Develop. Inf. Retrieval, 2008, pp. 307–314

Author’s Details

Mr.P.VIJAYA RAGHAVULU received

M.Tech(CSE) Degree from School of

Information Technology,

Autonomous, and Affiliated to JNTUA,

Anathapur. He is currently working as Assistant

Professor in the Department of Computer

Science and Engineering in Modugula

Kalavathamma Institute of Technology for

Women, Rajampet, Kadapa,AP India. His

interests includes Object Oriented

Programming, Operating System, Database

Management System, Computer Networking,

Cloud Computing and Software Quality

Assurance.

Ms. S.Harsha Nandini . SHe is

currently pursuing M.tech

Degree in Computer Science

and Engineering specialization in Modugula

Kalavathamma Institute of Technology for

Women, Rajampet, Kadapa,AP

