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Abstract— Short-text messages such as 

tweets are being created and shared at an 

unprecedented rate. Tweets, in their raw 

form, while being informative, can also be 

overwhelming. For both end-users and data 

analysts, it is a nightmare to plow through 

millions of tweets which contain enormous 

amount of noise and redundancy. In this 

paper, we propose a novel continuous 

summarization framework called Sumblr to 

alleviate the problem. In contrast to the 

traditional document summarization 

methods which focus on static and small-

scale data set, Sumblr is designed to deal 

with dynamic, fast arriving, and large-scale 

tweet streams. Our proposed framework 

consists of three major components. First, 

we propose an online tweet stream 

clustering algorithm to cluster tweets and 

maintain distilled statistics in a data 

structure called tweet cluster vector (TCV). 

Second, we develop a TCV-Rank 

summarization technique for generating 

online summaries and historical summaries 

of arbitrary time durations. Third, we design 

an effective topic evolution detection 

method, which monitors summary-

based/volume-based variations to produce 

timelines automatically from tweet streams. 

Our experiments on large-scale real tweets 

demonstrate the efficiency and effectiveness 

of our framework. 

1INTRODUCTION  

Increasing popularity of microblogging 

services such as Twitter, Weibo, and Tumblr 

has resulted in the explosion of the amount 

of short-text messages. Twitter, for instance, 

which receives over 400 million tweets per 

day1 has emerged as an invaluable source of 

news, blogs, opinions, and more. Tweets, in 

their raw form, while being informative, can 

also be overwhelming. For instance, search 

for a hot topic in Twitter may yield millions 

of tweets, spanning weeks. Even if filtering 

is allowed, plowing through so many tweets 
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for important contents would be a 

nightmare, not to mention the enormous 

amount of noise and redundancy that one 

might encounter. To make things worse, 

new tweets satisfying the filtering criteria 

may arrive continuously, at an unpredictable 

rate. One possible solution to information 

overload problem is summarization. 

Summarization represents a set of 

documents by a summary consisting of 

several sentences. Intuitively, a good 

summary should cover the main topics (or 

subtopics) and have diversity among the 

sentences to reduce redundancy. 

Summarization is extensively used in 

content presentation, specially when users 

surf the internet with their mobile devices 

which have much smaller screens than PCs. 

Traditional document summarization 

approaches, however, are not as effective in 

the context of tweets given both thelarge 

volume of tweets as well as the fast and 

continuous nature of their arrival. Tweet 

summarization, therefore, requires 

functionalities which significantly differ 

from traditional summarization. In general, 

tweet summarization has to take into 

consideration thet emporal feature of the 

arriving tweets. Let us illustrate the desired 

properties of a tweet summarization system 

using an illustrative example of a usage of 

such a system. Consider a user interested in 

a topic-related tweet stream, for example, 

tweets about “Apple”. A tweet 

summarization system will continuously 

monitor “Apple” related tweets producing a 

real-time timeline of the tweet stream. As 

illustrated in Fig. 1, a user may explore 

tweets based on a timeline (e.g., “Apple” 

tweets posted between October 22nd, 2012 

to November 11th, 2012). Given a timeline 

range, the summarization system may 

produce a sequence of timestamped 

summaries to highlight points where the 

topic/subtopics evolved in the stream. Such 

a system will effectively enable the user to 

learn major news/ discussion related to 

“Apple” without having to read through the 

entire tweet stream. Given the big picture 

about topic evolution about “Apple”, a user 

may decide to zoom in to get a more 

detailed report for a smaller duration (e.g., 

from 8 am to 11 pm on November 5th). The 

system may provide a drill-down summary 

of the duration that enables the user to get 

additional details for that duration. A user, 

perusing a drill-down summary, may 

alternatively zoom out to a coarser range 

(e.g., October 21st to October 30th) to 

obtain a roll-up summary of tweets. To be 
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able to support such drill-down and roll-up 

operations, the summarization system must 

support the following two queries: 

summaries of arbitrary time durations and 

real-time/range timelines. Such application 

would not only facilitate easy navigation in 

topic-relevant tweets, but also support a 

range of data analysis tasks such as instant 

reports or historical survey. To this end, in 

this paper, we propose a new summarization 

method, continuous summarization, for 

tweet streams. 

2 RELATED WORK 

 In this section, we review the related work 

including stream data clustering, 

document/microblog summarization, 

timeline detection, and other microblog 

mining tasks. 

2.1 Stream Data Clustering Stream data 

 clustering has been widely studied in the 

literature. BIRCH clusters the data based on 

an in-memory structure called CF-tree 

instead of the original large data set. Bradley 

et alproposed a scalable clustering 

framework which selectively stores 

important portions of the data, and 

compresses or discards other portions. 

CluStream is one of the most classic stream 

clustering methods. It consists of an online 

micro-clustering component and an offline 

macro-clustering component. The pyramidal 

time frame was also proposed in to recall 

historical microclusters for different time 

durations. A variety of services on the Web 

such as news filtering, text crawling, and 

topic detecting etc. have posed requirements 

for text stream clustering. A few algorithms 

have been proposed to tackle the problem 

Most of these techniques adopt partition-

based approaches to enable online clustering 

of stream data. As a consequence, these 

techniques fail to provide effective analysis 

on clusters formed over different time 

durations.  

2.2 Document/Microblog  

Summarization Document summarization 

can be categorized as extractive and 

abstractive. The former selects sentences 

from the documents, while the latter may 

generate phrases and sentences that do not 

appear in the original documents. In this 

paper, we focus on extractive 

summarization. Extractive document 

summarization has received a lot of recent 

attention. Most of them assign salient scores 

to sentences of the documents, and select the 

top-ranked sentences. Some works try to 
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extract summaries without such salient 

scores. Wang et al. used the symmetric non-

negative matrix factorization to cluster 

sentences and choose sentences in each 

cluster for summarization. He et al. 

proposed to summarize documents from the 

perspective of data reconstruction, and select 

sentences that can best reconstruct the 

original documents. Xu et al. modeled 

documents (hotel reviews) as multi-attribute 

uncertain data and optimized a probabilistic 

coverage problem of the summary. While 

document summarization has been studied 

for years, microblog summarization is still 

in its infancy. Sharifi et al. proposed the 

Phrase Reinforcement algorithm to 

summarize tweet posts using a single  

2.3 Timeline Detection  

The demand for analyzing massive contents 

in social medias fuels the developments in 

visualization techniques. Timeline is one of 

these techniques which can make analysis 

tasks easier and faster. Diakopoulos and 

Shamma  made early efforts in this area, 

using timelines to explore the 2008 

Presidential Debates by Twitter sentiment. 

Dork et al.  presented a timeline-based 

backchannel for conversations around 

events. In  Yan et al. proposed the 

evolutionary timeline summarization (ETS) 

to compute evolution timelines similar to 

ours, which consists of a series of time-

stamped summaries. However, in the dates 

of summaries are determined by a pre-

defined timestamp set. In contrast, our 

method discovers the changing dates and 

generates timelines dynamically during the 

process of continuous summarization. 

Moreover, ETS does not focus on efficiency 

and scalability issues, which are very 

important in our streaming context. Several 

systems detect important moments when 

rapid increases or “spikes” in status update 

volume happen. TwitInfo developed an 

algorithm based on TCP congestion 

detection, while Nichols et al.  employed a 

slope-based method to find spikes. After 

that, tweets from each moment are 

identified, and word clouds or summaries 

are selected. Different from this two-step 

approach, our method detects topic 

evolution and produces summaries/timelines 

in an online fashion. 

2.4 Other Microblog Mining Tasks  

The emergence of microblogs has 

engendered researches on many other 

mining tasks, including topic modeling [27], 
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storyline generation [28] and event 

exploration [25]. Most of these researches 

focus on static data sets instead of data 

streams. For twitter stream analysis, Yang et 

al. [29] studied frequent pattern mining and 

compression. In [30], Van Durme aimed at 

discourse participants classification and used 

gender prediction as the example task, 

which is also a different problem from ours. 

To sum up, in this work, we propose a new 

problem called continuous tweet 

summarization. Different from previous 

studies, we aim to summarize large-scale 

and evolutionary tweet streams, producing 

summaries and timelines in an online 

fashion. 

3 PRELIMINARIES  

In this section, we first present a data model 

for tweets, then introduce two important 

data structures: the tweet cluster vector and 

the pyramidal time frame. 

3.1 Tweet Representation 

 Generally, a document is represented as a 

textual vector, where the value of each 

dimension is the TF-IDF score of a word. 

However, tweets are not only textual, but 

also have temporal nature—a tweet is 

strongly correlated with its posted time. In 

addition, the importance of a tweet is 

affected by the author’s social influence. To 

estimate the user influence, we build a 

matrix based on social relationships among 

users, and compute the UserRank as in [31]. 

As a result, we define a tweet ti as a tuple: 

ðtvi;ts i;w iÞ, where tvi is the textual vector, 

tsi is the posted timestamp and wi is the 

UserRank value of the tweet’s author. 

3.2 Tweet Cluster Vector 

 During tweet stream clustering, it is 

necessary to maintain statistics for tweets to 

facilitate summary generation. In this 

section, we propose a new data structure 

called tweet cluster vector, which keeps 

information of tweet cluster. 

Definition 1. For a cluster C containing 

tweets t1;t2;...;tn, its tweet cluster vector is 

defined as a tuple: TCVðCÞ¼ ðsum v;wsum 

v;ts1;ts2;n;ftsetÞ, where � sum v ¼Pn i¼1 

tvi=jjtvijj is the sum of normalized textual 

vectors, � wsum v ¼Pn i¼1 wi �tvi is the 

sum of weighted textual vectors, � ts1 ¼Pn 

i¼1 tsi is the sum of timestamps, � ts2 ¼Pn 

i¼1ðtsiÞ2 is the quadratic sum of 

timestamps, � n is the number of tweets in 

the cluster, and � ft set is a focus tweet set 
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of size m, consisting of the closest m tweets 

to the cluster centroid. 

The form of sum v is used for ease of 

presentation. In fact, we only store the 

identifiers and sums of values of the words 

occurring in the cluster. The same 

convention is used for wsum v. To select 

tweets into ft set, we use cosine similarity as 

the distance metric. From the definition, we 

can derive the vector of cluster centroid 

(denoted as cv) cv ¼ X n i¼1 wi �tvi ! �n 

¼ wsum v=n: (1) The definition of TCV is 

an extension of the cluster feature vector 

proposed in [2]. Besides information of data 

points (textual vectors), TCV includes 

temporal information and representative 

original tweets. As in [2], our TCV structure 

can also be updated in an incremental 

manner when new tweets arrive. We shall 

discuss details on TCV updating in Section 

4.1.2. 

3.3 Pyramidal Time 

 Frame To support summarization over user-

defined time durations, it is crucial to store 

the maintained TCVs at particular moments, 

which are called snapshots. While storing 

snapshots at every moment is impractical 

due to huge storage overhead, insufficient 

snapshots make it hard to recall historical 

information for different durations. This 

dilemma leads to the incorporation of the 

pyramidal time frame [1]: 

4 THE SUMBLR FRAMEWORK  

our framework consists of three main 

modules: the tweet stream clustering 

module, the high-level summarization 

module and the timeline generation module. 

In this section, we shall present each of them 

in detail. 

4.1 Tweet Stream Clustering 

 The tweet stream clustering module 

maintains the online statistical data. Given a 

topic-based tweet stream, it is able to 

efficiently cluster the tweets and maintain 

compact cluster information. 

4.1.1 Initialization  

At the start of the stream, we collect a small 

number of tweets and use a k-means 

clustering algorithm to create the initial 

clusters. The corresponding TCVs are 

initialized according to Definition 1. Next, 

the stream clustering process starts to 

incrementally update the TCVs whenever a 

new tweet arrives. 
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4.1.2 Incremental Clustering  

Suppose a tweet t arrives at time ts, and 

there are N active clusters at that time. The 

key problem is to decide whether to absorb t 

into one of the current clusters or upgrade t 

as a new cluster. We first find the cluster 

whose centroid is the closest to t. 

Specifically, we get the centroid of each 

cluster based on Equation (1), compute its 

cosine similarity to t, and find the cluster Cp 

with the largest similarity (denoted as 

MaxSimðtÞ). Note that although Cp is the 

closest to t, it does not mean t naturally 

belongs to Cp. The reason is that t may still 

be very distant from Cp. In such case, a new 

cluster should be created . The decision of 

whether to create a new cluster can be made 

with the following heuristic. 

4.2 High-Level Summarization 

 The high-level summarization module 

provides two types of summaries: online and 

historical summaries. An online summary 

describes what is currently discussed among 

the public. Thus, the input for generating 

online summaries is retrieved directly from 

the current clusters maintained in memory. 

On the other hand, a historical summary 

helps people understand the main 

happenings during a specific period, which 

means we need to eliminate the influence of 

tweet contents from the outside of that 

period. As a result, retrieval of the required 

information for generating historical 

summaries is more complicated, and this 

shall be our focus in the following 

discussion. Suppose the length of a user-

defined time duration is H, and the ending 

timestamp of the duration is tse. 

.4.2.1 TCV-Rank Summarization 

 Algorithm Given an input cluster set, we 

denote its corresponding TCV set as DðcÞ. 

A tweet set T consists of all the tweets in the 

ft sets inDðcÞ. The tweet summarization 

problem is to extract k tweets from T, so that 

they can cover as many tweet contents as 

possible. Let us first describe this problem 

formally. Denote F¼f T1;T2;...;T tg as a 

collection of non-empty subsets ofT , where 

a subset Ti represents a sub-topic and jTij 

means the number of its related tweets. 

Suppose for each Ti, there is a tweet which 

represents the content of Ti’s sub-topic. 

Then, selecting k tweets is equivalent to 

selecting k subsets. Now, the problem can 

be defined as: given a number k and a 

collection of sets F, find a subset F0 �F, 

such that jF0j¼k and jSTi2F0Tij is 
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maximized (i.e., F0 contains as many tweets 

as possible). We note that this is the Max-

kCover problem, which is NP-hard. Thus, 

our summarization problem is also NP-hard. 

From the geometric interpretation, our 

summarization tends to select tweets that 

span the intrinsic subspace of candidate 

tweet space, such that it can cover most 

information of the whole tweet set. 

4.3 Timeline Generation  

The core of the timeline generation module 

is a topic evolution detection algorithm 

which produces real-time and range 

timelines in a similar way. We shall only 

describe the real-time case here. The 

algorithm discovers sub-topic changes by 

monitoring quantified variations during the 

course of stream processing. A large 

variation at a particular moment implies a 

sub-topic change, which is a new node on 

the timeline. The main process is described 

in Algorithm 3. We first bin the tweets by 

time (e.g., by day) as the stream proceeds. 

This sequenced binning is used as input of 

the algorithm. Then, we loop through the 

bins and append new timeline nodes 

whenever large variations are detected (lines 

4-5). 

4.3.1 Summary-Based Variation  

As tweets arrive from the stream, online 

summaries are produced continuously by 

utilizing online cluster statistics in TCVs. 

This allows for generation of a real-time 

timeline. 

Generally, when an obvious variation occurs 

in the main contents discussed in tweets (in 

the form of summary), we can expect a 

change of sub-topic (i.e., a time node on the 

timeline). To quantify the variation, we use 

the Jensen-Shannon divergence to measure 

the distance between two word distributions 

in two successive summaries Sc and Sp (Sc 

is the distribution of the current summary 

and Sp is that of the previous one) 

DJSðSc;SpÞ¼ 1 

2ðDKLðScjjMÞþDKLðSpjjMÞÞ: (3) M is 

the average of the two word distributions, 

i.e., M ¼ 1 2ðSc þSpÞ. DKL is the 

Kullback-Leibler divergence (KLD) which 

defines the divergence of distribution M 

from S DKLðSjjMÞ¼X w2V pðwjSÞlog 

pðwjSÞ pðwjMÞ : (4) We apply 

DJSðSc;SpÞ to measure variation instead of 

directly using DKLðScjjSpÞ, because the 

JSD is a symmetrical and smoothed (the use 

of pðwjMÞ avoids zero values of the 

denominator in Equation (4)) version of the 
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KLD. For ease of comparison, we use the 

base 2 logarithm in Equation (4), so that the 

JSD is bounded by½0;1�[34]. According to 

this summary-based variation, we determine 

whether the current time is a sub-topic 

changing node by Dcur Davg > ts; (5) where 

Dcur is the distance between the current 

summary and its previous neighboring 

summary, Davg is the average distance of all 

the previous successive summary pairs 

which do not produce time nodes, and ts (ts 

� 1) is the decision threshold. That is, we 

detect sub-topic changes whenever there is a 

burst in distances between successive 

summaries. 

4.3.2 Volume-Based Variation 

 Though the summary-based variation can 

reflect sub-topic changes, some of them may 

not be influential enough. Since many tweets 

are related to users’ daily life or trivial 

events, a sub-topic change detected from 

textual contents may not be significant 

enough.  

5 EXPERIMENTS 

 In this section, we evaluate the performance 

of Sumblr. We present the experiments for 

summarization and timeline generation 

respectively. 

5.1 Experiments for Summarization 

 5.1.1 Setup Data Sets.  

We construct five data sets to evaluate 

summarization. One is obtained by 

conducting keyword filtering on a large 

Twitter data set used by . The other four 

include tweets acquired during one month in 

2012 via Twitter’s keyword tracking API.4 

As we do not have access to the respective 

users’ social networks for these four, we set 

their weights of tweets wi to the default 

value of 1. Details of the data sets are listed 

in Table 2. Ground truth for summaries. As 

no previous work has conducted similar 

study on continuous summarization, we 

have to build our own ground truth 

(reference summaries). However, manual 

creation of these summaries is apparently 

impractical due to the large size of the data 

sets. Thus, we employ a two-step method to 

obtain fair-quality reference summaries: 1) 

Given a time duration, we first retrieve the 

corresponding tweet subset, and use the 

following three well-recognized 

summarization algorithms to get three 

candidate summaries. ClusterSum clusters 

the tweets and picks the most weighted 

tweet from each cluster to form summary. 

LexRank  first builds a sentence similarity 
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graph, and then selects important sentences 

based on the concept of eigenvector 

centrality. DSDR  models the relationship 

among sentences using linear reconstruction, 

and finds an optimal set of sentences to 

approximate the original documents, by 

minimizing the reconstruction error. 

5.1.2 Overall Performance Comparison  

In this section, we compare the F-scores and 

runtime costs between Sumblr and three 

baseline algorithms (sliding window 

version). As tweets are often produced very 

quickly and reach a huge volume in a short 

while, it is hardly meaningful to summarize 

a small number of tweets. Thus the window 

size should be a relatively large one. In this 

experiment, we set window size to 20,000 

and sampling interval to 2,000. The step size 

varies from 4,000 to 20,000. The metrics are 

averaged over the whole stream. Figs. 6 and 

7 present the results for different step sizes.  

5.1.3 Parameter Tuning 

 In this section, we tune the parameters in 

our approach. In each of the following 

experiments, we vary one parameter and 

keep the others fixed. Effect of b. In 

Heuristic 1 we use b to determine whether to 

create a new cluster. Figs. 9a and 9b show 

its effect on summary quality and efficiency. 

When b is small, tweets related to different 

sub-topics may be absorbed into the same 

clusters, so the input of our summarization 

component is of low quality. At the same 

time, there are many focus tweets in each 

cluster, thus the time cost of cluster updating 

and summarization is high. When b 

increases, too many clusters are created, 

causing damage to both quality and 

efficiency. A good choice is b ¼ 0:07 as it 

gives more balanced results. Effect of 

Nmax. Figs. 9c and 9d depict the 

performance of Nmax. For small Nmaxs, 

many merging operations are conducted, 

which are time-consuming and produce lots 

of low-quality clusters. For large values, 

stream clustering is slow due to large 

number of clusters. Note that the storage 

overhead (both in memory and disk) is also 

higher for larger Nmaxs. A balanced value 

for Nmax is 150. Effect of mc. Another 

parameter in cluster merging is mc (0 < mc 

<1). It does not have significant impact on 

efficiency, so we only present its quality 

results (Fig. 9e). Small values of mc result in 

low-quality clusters, while large ones lead to 

many merging operations, which in turn 

reduce the quality of clusters. An ideal value 

for mc is 0:7.  
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6 CONCLUSION  

We proposed a prototype called Sumblr 

which supported continuous tweet stream 

summarization. Sumblr employs a tweet 

stream clustering algorithm to compress 

tweets into TCVs and maintains them in an 

online fashion. Then, it uses a TCV-Rank 

summarization algorithm for generating 

online summaries and historical summaries 

with arbitrary time durations. The topic 

evolution can be detected automatically, 

allowing Sumblr to produce dynamic 

timelines for tweet streams. The 

experimental results demonstrate the 

efficiency and effectiveness of our method. 

For future work, we aim to develop a multi-

topic version of Sumblr in a distributed 

system, and evaluate it on more complete 

and large-scale data sets. 
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